Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Steroids ; 168: 108444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31295460

RESUMO

Brassinosteroids (BRs) are steroid hormones regulating various aspects of plant metabolism, including growth, development and stress responses. However, little is known about the mechanism of their impact on antioxidant systems and phospholipid turnover. Using tobacco plants overexpressing H+/Ca2+vacuolar Arabidopsis antiporter CAX1, we showed the role of Ca2+ ion balance in the reactive oxygen species production and rapid phosphatidic acid accumulation induced by exogenous BR. Combination of our experimental results with public transcriptomic and proteomic data revealed a particular role of Ca2+-dependent phospholipid metabolizing enzymes in BR signaling. Here we provide novel insights into the role of calcium balance and lipid-derived second messengers in plant responses to exogenous BRs and propose a complex model integrating BR-mediated metabolic changes with phospholipid turnover.


Assuntos
Brassinosteroides , Antioxidantes , Cálcio , Proteômica , Nicotiana
3.
Protoplasma ; 253(4): 987-1004, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26215561

RESUMO

Gravity is one of the environmental cues that direct plant growth and development. Recent investigations of different gravity signalling pathways have added complexity to how we think gravity is perceived. Particular cells within specific organs or tissues perceive gravity stimulus. Many downstream signalling events transmit the perceived information into subcellular, biochemical, and genomic responses. They are rapid, non-genomic, regulatory, and cell-specific. The chain of events may pass by signalling lipids, the cytoskeleton, intracellular calcium levels, protein phosphorylation-dependent pathways, proteome changes, membrane transport, vacuolar biogenesis mechanisms, or nuclear events. These events culminate in changes in gene expression and auxin lateral redistribution in gravity response sites. The possible integration of these signalling events with amyloplast movements or with other perception mechanisms is discussed. Further investigation is needed to understand how plants coordinate mechanisms and signals to sense this important physical factor.


Assuntos
Sensação Gravitacional , Desenvolvimento Vegetal , Plantas , Citoesqueleto/fisiologia , Fosforilação , Proteínas de Plantas/fisiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...